资源类型

期刊论文 40

年份

2024 1

2023 6

2022 5

2021 2

2020 3

2019 2

2018 2

2016 2

2015 4

2014 1

2013 3

2012 6

2011 1

2006 1

2003 1

展开 ︾

关键词

移动机器人 3

路径规划 2

主动物品检测;深度Q学习网络;训练算法;服务机器人 1

人与机器人交互;机器人提升疗法;社会交互式机器人;机器人介导干预 1

人居辅助环境 1

人工势场 1

人工智能 1

免疫网络 1

几何构造 1

分布式人工智能云端平台 1

可编程变形 1

同时定位与建图(SLAM);长期;鲁棒性;激光雷达(LiDaR);视觉惯性激光雷达导航(VILN) 1

多移动机器人系统;碰撞避免;死锁避免;粘连节点;运动协同 1

家居服务机器人;云端至机器人知识迁移;模型融合 1

心肌细胞 1

操作及抓取 1

无线定位 1

智能机器人 1

最佳路径 1

展开 ︾

检索范围:

排序: 展示方式:

Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

Conghui LIANG, Marco CECCARELLI, Yukio TAKEDA

《机械工程前沿(英文)》 2012年 第7卷 第4期   页码 357-370 doi: 10.1007/s11465-012-0340-5

摘要:

In this paper, operation analysis of a Chebyshev-Pantograph leg mechanism is presented for a single degree of freedom (DOF) biped robot. The proposed leg mechanism is composed of a Chebyshev four-bar linkage and a pantograph mechanism. In contrast to general fully actuated anthropomorphic leg mechanisms, the proposed leg mechanism has peculiar features like compactness, low-cost, and easy-operation. Kinematic equations of the proposed leg mechanism are formulated for a computer oriented simulation. Simulation results show the operation performance of the proposed leg mechanism with suitable characteristics. A parametric study has been carried out to evaluate the operation performance as function of design parameters. A prototype of a single DOF biped robot equipped with two proposed leg mechanisms has been built at LARM (Laboratory of Robotics and Mechatronics). Experimental test shows practical feasible walking ability of the prototype, as well as drawbacks are discussed for the mechanical design.

关键词: biped robots     leg mechanisms     simulation    

Stability and agility: biped running over varied and unknown terrain

Yang YI,Zhi-yun LIN

《信息与电子工程前沿(英文)》 2015年 第16卷 第4期   页码 283-292 doi: 10.1631/FITEE.1400284

摘要: We tackle the problem of a biped running over varied and unknown terrain. Running is a necessary skill for a biped moving fast, but it increases the challenge of dynamic balance, especially when a biped is running on varied terrain without terrain information (due to the difficulty and cost of obtaining the terrain information in a timely manner). To address this issue, a new dynamic indicator called the sustainable running criterion is developed. The main idea is to sustain a running motion without falling by maintaining the system states within a running-feasible set, instead of running on a periodic limit cycle gait in the traditional way. To meet the precondition of the criterion, the angular moment about the center of gravity (COG) is restrained close to zero at the end of the stance phase. Then to ensure a small state jump at touchdown on the unknown terrain, the velocity of the swing foot is restrained within a specific range at the end of the flight phase. Finally, the position and velocity of the COG are driven into the running-feasible set. A five-link biped with underactuated point foot is considered in simulations. It is able to run over upward and downward terrain with a height difference of 0.15 m, which shows the effectiveness of our control scheme.

关键词: Underactuated running biped     Dynamic balance     Varied and unknown terrain    

A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

null

《机械工程前沿(英文)》 2016年 第11卷 第2期   页码 144-158 doi: 10.1007/s11465-016-0391-0

摘要:

A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A three-dimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.

关键词: feasibility study     biped locomotor     biped walking     mechanical design     dynamic simulation     tripod leg mechanism     3-UPU parallel manipulator    

Comprehensive kinetostatic modeling and morphology characterization of cable-driven continuum robots

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0756-0

摘要: In-situ maintenance is of great significance for improving the efficiency and ensuring the safety of aero-engines. The cable-driven continuum robot (CDCR) with twin-pivot compliant mechanisms, which is enabled with flexible deformation capability and confined space accessibility, has emerged as a novel tool that aims to promote the development of intelligence and efficiency for in-situ aero-engine maintenance. The high-fidelity model that describes the kinematic and morphology of CDCR lays the foundation for the accurate operation and control for in-situ maintenance. However, this model was not well addressed in previous literature. In this study, a general kinetostatic modeling and morphology characterization methodology that comprehensively contains the effects of cable-hole friction, gravity, and payloads is proposed for the CDCR with twin-pivot compliant mechanisms. First, a novel cable-hole friction model with the variable friction coefficient and adaptive friction direction criterion is proposed through structure optimization and kinematic parameter analysis. Second, the cable-hole friction, all-component gravities, deflection-induced center-of-gravity shift of compliant joints, and payloads are all considered to deduce a comprehensive kinetostatic model enabled with the capacity of accurate morphology characterization for CDCR. Finally, a compact continuum robot system is integrated to experimentally validate the proposed kinetostatic model and the concept of in-situ aero-engine maintenance. Results indicate that the proposed model precisely predicts the morphology of CDCR and outperforms conventional models. The compact continuum robot system could be considered a novel solution to perform in-situ maintenance tasks of aero-engines in an invasive manner.

关键词: kinetostatic modeling     morphology characterization     variable friction     continuum robots     in-situ maintenance    

Vibration suppression of speed-controlled robots with nonlinear control

Paolo BOSCARIOL,Alessandro GASPARETTO

《机械工程前沿(英文)》 2016年 第11卷 第2期   页码 204-212 doi: 10.1007/s11465-016-0380-3

摘要:

In this paper, a simple nonlinear control strategy for the simultaneous position tracking and vibration damping of robots is presented. The control is developed for devices actuated by speed-controlled servo drives. The conditions for the asymptotic stability of the closed-loop system are derived by ensuring its passivity. The capability of achieving improved trajectory tracking and vibration suppression is shown through experimental tests conducted on a three-axis Cartesian robot. The control is aimed to be compatible with most industrial applications given the simplicity of implementation, the reduced computational requirements, and the use of joint position as the only measured signal.

关键词: industrial robot     nonlinear control     vibration damping     model-free control     motion control    

Footholds optimization for legged robots walking on complex terrain

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0742-y

摘要: This paper proposes a novel continuous footholds optimization method for legged robots to expand their walking ability on complex terrains. The algorithm can efficiently run onboard and online by using terrain perception information to protect the robot against slipping or tripping on the edge of obstacles, and to improve its stability and safety when walking on complex terrain. By relying on the depth camera installed on the robot and obtaining the terrain heightmap, the algorithm converts the discrete grid heightmap into a continuous costmap. Then, it constructs an optimization function combined with the robot’s state information to select the next footholds and generate the motion trajectory to control the robot’s locomotion. Compared with most existing footholds selection algorithms that rely on discrete enumeration search, as far as we know, the proposed algorithm is the first to use a continuous optimization method. We successfully implemented the algorithm on a hexapod robot, and verified its feasibility in a walking experiment on a complex terrain.

关键词: footholds optimization     legged robot     complex terrain adapting     hexapod robot     locomotion control    

Modular crawling robots using soft pneumatic actuators

Nianfeng WANG, Bicheng CHEN, Xiandong GE, Xianmin ZHANG, Wenbin WANG

《机械工程前沿(英文)》 2021年 第16卷 第1期   页码 163-175 doi: 10.1007/s11465-020-0605-3

摘要: Crawling robots have elicited much attention in recent years due to their stable and efficient locomotion. In this work, several crawling robots are developed using two types of soft pneumatic actuators (SPAs), namely, an axial elongation SPA and a dual bending SPA. By constraining the deformation of the elastomeric chamber, the SPAs realize their prescribed motions, and the deformations subjected to pressures are characterized with numerical models. Experiments are performed for verification, and the results show good agreement. The SPAs are fabricated by casting and developed into crawling robots with 3D-printing connectors. Control schemes are presented, and crawling tests are performed. The speeds predicted by the numerical models agree well with the speeds in the experiments.

关键词: soft robot     soft pneumatic actuator     kinematic model     crawling robot     modular design    

A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots for

Fabrizio SERGI, Dino ACCOTO, Nevio L. TAGLIAMONTE, Giorgio CARPINO, Eugenio GUGLIELMELLI

《机械工程前沿(英文)》 2011年 第6卷 第1期   页码 61-70 doi: 10.1007/s11465-011-0206-2

摘要:

The choice of non-anthropomorphic kinematic solutions for wearable robots is motivated both by the necessity of improving the ergonomics of physical Human-Robot Interaction and by the chance of exploiting the intrinsic dynamical properties of the robotic structure so to improve its performances. Under these aspects, this new class of robotic solutions is potentially advantageous over the one of anthropomorphic robotic orthoses. However, the process of kinematic synthesis of non-anthropomorphic wearable robots can be too complex to be solved uniquely by relying on conventional synthesis methods, due to the large number of open design parameters. A systematic approach can be useful for this purpose, since it allows to obtain the complete list of independent kinematic solutions with desired properties. In this perspective, this paper presents a method, which allows to generalize the problem of kinematic synthesis of a non-anthropomorphic wearable robot for the assistance of a specified set of contiguous body segments. The methodology also includes two novel tests, specifically devised to solve the problem of enumeration of kinematic structures of wearable robots: the HR-isomorphism and the HR-degeneracy tests. This method has been implemented to derive the atlas of independent kinematic solutions suitable to be used for the kinematic design of a planar wearable robot for the lower limbs.

关键词: assistive robotics     non-anthropomorphic wearable robots     topology     kinematic synthesis     HR-isomorphism test     HR-degeneracy test    

An experimental analysis of human straight walking

Tao LI, Marco CECCARELLI

《机械工程前沿(英文)》 2013年 第8卷 第1期   页码 95-103 doi: 10.1007/s11465-013-0357-4

摘要:

In this paper, an experimental analysis of human straight walking has been presented. Experiments on human walking were carried out by using Cassino tracking system which is a passive cable-based measuring system. This system is adopted because it is capable of both pose and wrench measurements with fairly simple monitoring of operation. By using experimental results, trajectories of a human limb extremity and its posture have been analyzed; forces that are exerted against cables by the limb of a person under test have been measured by force sensors as well. Furthermore, by using experimental tests, modeling and characterization of the human straight walking gait have been proposed.

关键词: human locomotion     walking gait     characterization     humanoid robot     biped robot    

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-022-0741-z

摘要: Many heat transfer tubes are distributed on the tube plates of a steam generator that requires periodic inspection by robots. Existing inspection robots are usually involved in issues: Robots with manipulators need complicated installation due to their fixed base; tube mobile robots suffer from low running efficiency because of their structural restricts. Since there are thousands of tubes to be checked, task planning is essential to guarantee the precise, orderly, and efficient inspection process. Most in-service robots check the task tubes using row-by-row and column-by-column planning. This leads to unnecessary inspections, resulting in a long shutdown and affecting the regular operation of a nuclear power plant. Therefore, this paper introduces the structure and control system of a dexterous robot and proposes a task planning method. This method proceeds into three steps: task allocation, base position search, and sequence planning. To allocate the task regions, this method calculates the tool work matrix and proposes a criterion to evaluate a sub-region. And then all tasks contained in the sub-region are considered globally to search the base positions. Lastly, we apply an improved ant colony algorithm for base sequence planning and determine the inspection orders according to the planned path. We validated the optimized algorithm by conducting task planning experiments using our robot on a tube sheet. The results show that the proposed method can accomplish full task coverage with few repetitive or redundant inspections and it increases the efficiency by 33.31% compared to the traditional planning algorithms.

关键词: steam generator transfer tubes     mobile robot     dexterous structure     task planning     efficient inspection    

Towards a next-generation production system for industrial robots: A CPS-based hybrid architecture for

Qingmeng TAN, Yifei TONG, Shaofeng WU, Dongbo LI

《机械工程前沿(英文)》 2020年 第15卷 第1期   页码 1-11 doi: 10.1007/s11465-019-0563-9

摘要: Given the multiple varieties and small batches, the production of industrial robots faces the ongoing challenges of flexibility, self-organization, self-configuration, and other “smart” requirements. Recently, cyber physical systems have provided a promising solution for the requirements mentioned above. Despite recent progress, some critical issues have not been fully addressed at the shop floor level, including dynamic reorganization and reconfiguration, ubiquitous networking, and time constrained computing. Toward the next generation production system for industrial robots, this study proposed a hybrid architecture for smart assembly shop floors with closed-loop dynamic cyber physical interactions. Aiming for dynamic reorganization and reconfiguration, the study also proposed modularized smart assembly units for the deployment of physical assembly processes. Enabling technologies, such as multiagent system (MAS), self-organized wireless sensor actuator networks, and edge computing, were discussed and then integrated into the proposed architecture. Furthermore, a multijoint robot assembly process was selected as a target scenario. Thus, an MAS was developed to simulate the coordination and negotiation mechanisms for the proposed architecture on the basis of the Java Agent Development Framework platform.

关键词: cyber physical system     robot assembly     multiagent system     architecture    

Trajectory planning of mobile robots using indirect solution of optimal control method in generalized

M. NAZEMIZADEH, H. N. RAHIMI, K. AMINI KHOIY

《机械工程前沿(英文)》 2012年 第7卷 第1期   页码 23-28 doi: 10.1007/s11465-012-0304-9

摘要:

This paper presents an optimal control strategy for optimal trajectory planning of mobile robots by considering nonlinear dynamic model and nonholonomic constraints of the system. The nonholonomic constraints of the system are introduced by a nonintegrable set of differential equations which represent kinematic restriction on the motion. The Lagrange’s principle is employed to derive the nonlinear equations of the system. Then, the optimal path planning of the mobile robot is formulated as an optimal control problem. To set up the problem, the nonlinear equations of the system are assumed as constraints, and a minimum energy objective function is defined. To solve the problem, an indirect solution of the optimal control method is employed, and conditions of the optimality derived as a set of coupled nonlinear differential equations. The optimality equations are solved numerically, and various simulations are performed for a nonholonomic mobile robot to illustrate effectiveness of the proposed method.

关键词: mobile robot     trajectory planning     nonlinear dynamic     optimal control    

基于势场导向权的改进机器人路径规划免疫算法

王孙安,吴灿阳

《中国工程科学》 2013年 第15卷 第1期   页码 73-78

摘要:

为了解决复杂环境中移动机器人的路径规划问题,结合人工势场法计算量小的特性和人工免疫网络的自适应调节能力,提出了一种改进的路径规划免疫算法。为了提高免疫网络的搜索能力以及免疫网络的收敛性,将人工势场法的规划结果作为先验知识构建了导向权,同时将抗体命令清晰度和抗体转移后的距离变化作为变量,构建了新的抗体转移概率算子。仿真结果表明,与其他算法相比,新算法在最优规划能力和网络收敛性能方面都有明显提高。

关键词: 免疫网络     人工势场     移动机器人     路径规划    

Planar jumping with stable landing through foot orientation design and ankle joint control

Qilong YUAN, I-Ming CHEN

《机械工程前沿(英文)》 2012年 第7卷 第2期   页码 100-108 doi: 10.1007/s11465-012-0318-3

摘要:

This paper introduces a method to generate the planar jumping motion for biped robot. In this work, through determining the upper body posture trajectory in the flight phase, the foot landing posture is made to be flat while landing. Together with properly designing the trajectory for local center of gravity and the foot landing velocity, the soft landing trajectory is generated. A controller on the ankle joint is added to avoid significant impact with the ground and stabilize the robot after landing. Jumping motion with stable landing is achieved in a dynamic simulation environment based on this method.

关键词: biped jumping     stable landing control     jumping motion generation    

扩大机器人浮标舰队,助力全球海洋动态研究

Chris Palmer

《工程(英文)》 2023年 第22卷 第3期   页码 10-13 doi: 10.1016/j.eng.2023.01.001

标题 作者 时间 类型 操作

Operation analysis of a Chebyshev-Pantograph leg mechanism for a single DOF biped robot

Conghui LIANG, Marco CECCARELLI, Yukio TAKEDA

期刊论文

Stability and agility: biped running over varied and unknown terrain

Yang YI,Zhi-yun LIN

期刊论文

A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

null

期刊论文

Comprehensive kinetostatic modeling and morphology characterization of cable-driven continuum robots

期刊论文

Vibration suppression of speed-controlled robots with nonlinear control

Paolo BOSCARIOL,Alessandro GASPARETTO

期刊论文

Footholds optimization for legged robots walking on complex terrain

期刊论文

Modular crawling robots using soft pneumatic actuators

Nianfeng WANG, Bicheng CHEN, Xiandong GE, Xianmin ZHANG, Wenbin WANG

期刊论文

A systematic graph-based method for the kinematic synthesis of non-anthropomorphic wearable robots for

Fabrizio SERGI, Dino ACCOTO, Nevio L. TAGLIAMONTE, Giorgio CARPINO, Eugenio GUGLIELMELLI

期刊论文

An experimental analysis of human straight walking

Tao LI, Marco CECCARELLI

期刊论文

High-efficiency inspecting method for mobile robots based on task planning for heat transfer tubes in

期刊论文

Towards a next-generation production system for industrial robots: A CPS-based hybrid architecture for

Qingmeng TAN, Yifei TONG, Shaofeng WU, Dongbo LI

期刊论文

Trajectory planning of mobile robots using indirect solution of optimal control method in generalized

M. NAZEMIZADEH, H. N. RAHIMI, K. AMINI KHOIY

期刊论文

基于势场导向权的改进机器人路径规划免疫算法

王孙安,吴灿阳

期刊论文

Planar jumping with stable landing through foot orientation design and ankle joint control

Qilong YUAN, I-Ming CHEN

期刊论文

扩大机器人浮标舰队,助力全球海洋动态研究

Chris Palmer

期刊论文